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h-STABILITY AND BOUNDEDNESS IN THE
PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

YooN Hoe Goo*

ABSTRACT. In this paper, we investigate h-stability and bounds for
solutions of the the functional perturbed differential systems.

1. Introduction

Integral inequalities play a vital role in the study of boundedness and
other qualitative properties of solutions of differential equations. The
behavior of solutions of a perturbed system is determined in terms of
the behavior of solutions of an unperturbed system. There are three
useful methods for showing the qualitative behavior of the solutions of
perturbed nonlinear system : the use of integral inequalities, the method
of variation of constants formula, and Lyapunov’s second method.

The notion of h-stability (hS) was introduced by Pinto [13,14] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. He obtained a general variational h-stability
and some properties about asymptotic behavior of solutions of differ-
ential systems called h-systems. Also, he studied some general results
about asymptotic integration and gave some important examples in [14].
Choi and Koo [2], Choi and Ryu [3], and Choi et al. [4,5] investigated h-
stability and bounds of solutions for the perturbed functional differential
systems. Also, Goo et al. [7,8,9] studied the boundedness of solutions
for the perturbed functional differential systems.

The aim of this paper is to obtain h-stability and some results on
boundedness of the functional perturbed differential systems under suit-
able conditions on perturbed term. To do this, we need some integral
inequalities.
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2. Preliminaries

We consider the nonlinear differential system

(2.1) '(t) = f(t,x(t), x(to) = o,

where f € C(RT x R",R"), Rt = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on R* x R™ and f(¢,0) = 0. Also, consider the perturbed
differential systems of (2.1)

t
(2:2) ¢ =f(ty) +/t 9(s,y(s))ds + h(t,y(t), Ty(t)), y(to) = yo,
0

where g € C(R* x R",R"), h € C[R* x R" x R*,R"] , ¢(,0) = 0,
h(t,0,0) =0, and T : C(RT,R") — C(R™,R") is a continuous operator.
For z € R™, let |z = (307, x?)l/Q. For an n X n matrix A, define the
norm |A| of A by |A| = supjy<1 [Az].

Let z(t, to, xo) denote the unique solution of (2.1) with x(to, to, zo) =
xo, existing on [tg,00). Also, we consider the associated variational
systems around the zero solution of (2.1) and around z(t), respectively,

(2.3) V() = Folt, 0)0(), vlto) = v
and
(2.4) 2(t) = fu(t,z(t, to, 20))2(t), 2z(to) = 20.

The fundamental matrix ®(t, ¢, zo) of (2.4) is given by

0
@(ta th :L‘O) = 87370:6(757 t07 JIO),

and ®(t,19,0) is the fundamental matrix of (2.3).
We recall some notions of h-stability [14].

DEFINITION 2.1. The system (2.1) (the zero solution z = 0 of (2.1))
is called
(hS)h-stable if there exist a constant ¢ > 1, and a positive bounded
continuous function h on RT such that

[2(t)] < ¢lzo| A(t) h(to) ™

for t >ty > 0 and |zg| < & (here h(t)™!' = ﬁ)

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and A be the subset of M consisting of those nonsingular matrices
S(t) that are of class C' with the property that S(¢t) and S~1(¢) are
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bounded. The notion of ty-similarity in M was introduced by Conti
[6].

DEFINITION 2.2. A matrix A(t) € M is too-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R™,
ie., .

/ P(t)|dt < oo
0
such that
(2.5) S(t) 4+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of ty-similarity is an equivalence relation in the set of
all n x m continuous matrices on R™, and it preserves some stability
concepts [4,10].

In this paper, we investigate hS and bounds for solutions of the func-

tional perturbed differential systems using the notion of t..-similarity.
We give some related properties that we need in the sequal.

LEMMA 2.3. [14]
The linear system
(2.6) ' = A(t)z, z(ty) = o,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R such that

(27) [$(t:t0)| < eh(t) Ato)™
for t > to > 0, where ¢(t,to) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

(2.8) Y = f(t,y) + g(t,y), y(to) = o,

where g € C(RT x R",R") and g(¢,0) = 0. Let y(t) = y(¢,to, yo) denote
the solution of (2.8) passing through the point (¢g, o) in Rt x R™.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

LEMMA 2.4. Ifyg € R", then for all t such that x(t,ty,y0) € R",

y(t;t07y0) = x(t7t07y0) +/t @(tasay(s))g(svy(s)) ds.



76 Yoon Hoe Goo

THEOREM 2.1. [3] If the zero solution of (2.1) is hS, then the zero
solution of (2.3) is hS.

THEOREM 2.2. [4] Suppose that fy(t,0) is too-similar to f.(t, z(t,t0, z0))
for t > ty > 0 and |zg| < 0 for some constant 6 > 0. If the solution
v =0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

LEMMA 2.5. (Bihari — type inequality [5],1956) Let u, A € C(R™),
w € C((0,00)) and w(u) be nondecreasing in w. Suppose that, for some
c >0,

u(t) <c+ /t A(s)w(u(s))ds, t >ty > 0.

to
Then .
u(t) < W1 [W(c) +/t )\(s)ds], to <t < by,
0
where W (u) = f::) w‘ﬁ), W= (u) is the inverse of W (u) and

t
by = sup {t >ty : W(e) +/ A(s)ds € domW_l}.
to
LEMMA 2.6. [12] Let a,u € C[RT,RT],b(t,s) € C[RT x Rt ,RT] for
to < s <tandk >0 be constant. If

u(t) <k +/ [a(s)u(s) + /8 b(s, T)u(T)dr]ds,

to to
fort € RT, then

u(t) < kexp (/t[a(s) + /S b(S,T)dT]dS),

to to

fort € RT.

3. Main results

In this section, we investigate hS and boundedness for solutions of
the functional perturbed differential systems via t..-similarity.

THEOREM 3.1. Suppose that f;(t,0) is too-similar to f;(t,z(t,to, zg))
for t >ty > 0 and |zg| < ¢ for some constant § > 0, the solution x = 0
of (2.1) is hS with the increasing function h, and g in (2.2) satisfies

lg(r () ldr < a(s)ly(s)] + b(s) / () y(r)dr,

to
and
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h(s,y(s), Ty(s))| < b(s)([y(s)| + Ty (s)]), [Ty (s)] < /tSQ(T)Iy(T)IdT,

Wherea,bq,TECR+ j; ds<ooft ds<ooft s)ds <
00, [, r(s)ds < oo, and [ |a (s) [ (r )dT]ds < 00.
Then, any solut1on y=0 of (2 2) is hS

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,t0,y0) be solutions of
(2.1) and (2.2), respectively. By Theorem 2.1, since the solution = 0
of (2.1) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem

2.2, the solution z = 0 of (2.4) is hS. Using the nonlinear variation of
constants formula and the hS condition of x = 0 of (2.1), we have

(0 < 0]+ [ 190501 ([ latrp(rDlar + o). Tyl s
< exlyolh(t) hito) ™ + / e ((a(s) + () Iu(s)
1) [ 00) + a)ly(r)lar )

< cill) to) "+ [ cah(t)a(s) + b)) N ds
+ [Ceantenes) [ o)+ atr) i aras.

Set u(t) = |y(t)||h(t)|!. Now an application of Lemma 2.6 yields

ly(t)]

< calunl () (to) | exp (e /t:[a(s) T b(s) + b(s) /t:(m) +g(r))dr]ds)
< clyo|h(t) h(to) ",

where ¢ = ¢1 exp (czftzo[ (s)+b(s fto (1))dr]ds ) It fol-
lows that y = 0 of (2.2) is hS, and so the proof is complete. O

REMARK 3.1. Letting r(7) = 0 in Theorem 3.1, we obtain the same
result as that of Theorem 3.1 in [8].

LEMMA 3.2. Let u, A1, A2, A3, A\q € C(RT), w € C((0,00)) and w(u)
be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0, 0 <ty <
t,

u(t) <c+ /t: A1(s)u(s)ds + /t: Ao (s)w(u(s))ds + /t: As(s) /t: Aa(T)u(T)drds.
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Then
(3.1)

u(t) < W [wie) + /t:(Al(s) + () + As(s) /t N(r)dr)ds|., to <1< b,
where W, W~ are the same functions as in Lemma 2.5 and
b= sup {t > 1o W(c)+/t:(/\1(s)+>\2(5)+>\3(s) /t Ma(r)dr)ds € domW'}.
Proof. Defining

2(t) = e+ /t t A (8)u(s)ds+ /tt Ao (8)w(u(s))ds+ /tt )\3(5)( / ) )\4(7')u(7')d7')d5,

to

then we have z(ty) = ¢ and

2Z'(t) = M(B)u(t) + Xa(t)w(u(t)) + A3(t) / Aa(s)u(s)ds

to

< (A1(t) + Aa(t) + As(t) /t Ai(s)ds)w(z(t)), t > to,

to
since z(t) and w(u) are nondecreasing, u < w(u), and u(t) < z(¢).
Therefore, by integrating on [to, t], the function z satisfies

s

(32)  2(t) <c+ / (0 (5) + Aa(s) + Ag(s) / Na(7)dr)w(=(s)))ds.

to to
It follows from Lemma 2.5 that (3.2) yields the estimate (3.1). O

THEOREM 3.2. Let a,b,q,u,w € C(R"), w(u) be nondecreasing in u
such that u < w(u) and 2w(u) < w(*) for some v > 0. Suppose that
fz(t,0) is too-similar to fr(t,x(t,tg, xg)) for t > tog > 0 and |xg| < 0 for
some constant § > 0, the solution x = 0 of (2.1) is hS with the increasing
function h, and g in (2.2) satisfies

s

l9(7, y(1)dT < a(s)w(|y(s))),

to

and
|h(s,y(s), Ty(s))| < b(s)(ly(s)|+[Ty(s)]), | Ty(s)| < /t q(T)|y(T)ldr, s > tg >0,

where [, a(s)ds < 0o, [>°b(s)ds < oo, and [, q(s)ds < co. Then, any
solution y(t) = y(t, to,yo) of (2.2) is bounded on [ty, o) and it satisfies

t S
ly(t)] < h(t)W [W(C)HQ / (a(s)+b(s)+b(s) / q(T)dT)ds}, to <t < by,

to to
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where ¢ = c1|yo| h(to) ™%, W, W1 are the same functions as in Lemma
2.5 and

by = sup {t > to: W(e)+eo /t(a(s)—i-b(s)—l—b(s) /S q(m)dr)ds € domW_l}.

to to

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,t0,y0) be solutions of
(2.1) and (2.2), respectively. By Theorem 2.1, since the solution z = 0
of (2.1) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem
2.2, the solution z = 0 of (2.4) is hS. By Lemma 2.3, Lemma 2.4 and
the increasing property of the function h, we have

(O] < 0] + [ 12055 la(r.y (el + (s, y(s). Ty(s)] ) ds

to

< crlunlh®) h(to) ™+ [ eah(h(s)((as)ully(s)) + b (u(o)

+ [Camlytrlar)ds

< cilyolh(t) h(to) ™" + /t coh(t)b(s) |}y18|ds

to

+/t th(t)a(s)wdzgdH/t eah(1)b(s) /tsq(r)zg;'dms.

Set u(t) = |y(t)||h(t)|~!. Then, by Lemma 3.2, we obtain

O] < AOW ) +es [ (as) +006) +065) [ a(r)arias)

to to

where ¢ = c1|yo| h(to)~*. Thus, any solution y(t) = y(t,tg, o) of (2.2) is
bounded on [tg, 00). This completes the proof. ]

REMARK 3.3. Letting w(u) = u in Theorem 3.2, we obtain the same
result as that of Theorem 3.1 in [8].

LEMMA 3.4. Let u, A1, A2, A3, A\, A5 € C(RT), w € C((0,00)) and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and
0<t<t,

u(t) §c—i—/t:)q(s)w(u(s))ds—i—/t:/\2(3)</tos(/\3(7-)u(7')

i [ )\5(r)w(u(r))dr)d7'> ds,

to
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Then
(3.3)

u(t) < W [we) + /t "n(s) + 2(s) /t ") + Aa(r) /t ’ Aa(r)dr)dr)ds],

to <t < by, where W, W~ are the same functions as in Lemma 2.5
and

t
blzsup{tZtO:W(c)—l—/

to

(a(e02a(s) [ Oual)
+ Aa(7) /T As(r)dr)dr))ds € domWfl}.

Proof. Setting

() = c+ /t " (8)w(u(s))ds + ttxz(s)( /t O (F)ulr)

+ u(r) /t ’ )\5(r)w(u(r))dr)dr> ds,

then we have z(ty) = ¢ and

2(t) = MO)wu(t)) + Nt ftto As(s)u(s) +Aa(s) [ As(T)w(u(r))dr)ds
< (/\1(t) + )\2 fto )\3 —l— /\4 )ftf) )\5(T)d7’)d8)w(2(t)) t > 1o,

since z(t) and w(u) are nondecreasing, u < w(u), and u(t) < z(¢).
Therefore, by integrating on [to, t], the function z satisfies
(3.4)
t s T
z(t) < c+/ ()\1(8)+)\2(s)/ As(T)+a(7) [ As(r)dr)dT)w(z(s)))ds.
to to to
It follows from Lemma 2.5 that (3.4) yields the estimate (3.3). O

THEOREM 3.3. Let a,b,c, k,u,w € C( *), w(u) be nondecreasing in
u such that u < w(u) and vw( u) < w() for some v > 0. Suppose that
fx(t,0) is too-similar to f.(t,z(t, tg,xo)) for t >ty > 0 and |zg| < 0 for
some constant 6 > 0, the solution x = 0 of (2.1) is hS with the increasing
function h, and g in (2.2) satisfies

'g(s,y(S))‘ < a(s)y(s)] + b(s) /S k(r)w(|y(r))dr

to

and

[h(s,9(s), Ty(s))| < e(s)w(ly(s)]),
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Whereft d5<ooft ds<ooft ds<ooandft s)ds <
oo. Then, any solution y( ) = y(t, to, yo) of (2.2) is bounded on [tg, 00)
and

[y(t)] < hOW ™ W)+ / (els) + / (al(r) +b(r) / Tk(r)dr)dT)ds},

to to to

to < t < by, where ¢ = c1|yo| h(tg) ™', W, W~ are the same functions
as in Lemma 2.5 and

t s T
by = sup {t >t W(C)"‘CQ/ (c(s)+/ (a(T)—I—b(T)/ k(r)dr)dr)ds € domWfl}.
to to to
Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(2.1) and (2.2), respectively. By Theorem 2.1, since the solution z = 0
of (2.1) is hS, the solution v = 0 of (2.3) is hS. Therefore, by Theorem

2.2, the solution z = 0 of (2.4) is hS. Applying Lemma 2.3, Lemma 2.4,
and the increasing property of the function h, we have

y(0)| < Ja(t |+/|¢>tsy [ latr )l + s v(s) Tyta))s
< alyoln(®) hito) ™ + / ext(®(s)™ ([ (alrlutr)
/ Ky (ly(r))dr)dr + e(s)w(Jy(s)) ) ds

< c1lyolh(t) h(to) ™! +/t cah(t) (0( )w(|ZES;|)

Sl )] ’ ly(r)
+/ (a(7 )h(T) +b(r )/to Ky )dr)dr) ) ds.

Defining u(t) = |y(t)||h(t)| !, then, by Lemma 3.4, we have

t s T
[y(®)] < W W (e —|—02/ (c(s)—l—/ (a(T)+b(T)/ k(r)dr)dr)ds|
to to to
where ¢ = ¢1|yo| h(tp)!. The above estimation yields the desired result

since the function A is bounded, and the theorem is proved. ]
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